FREE GLOBAL SHIPPING on all orders over £375
0 Cart
Added to Cart
    You have items in your cart
    You have 1 item in your cart
    Total
    Check Out Continue Shopping

    News

    Blog Menu
    Material Challenges of Next Generation Batteries

    Material Challenges of Next Generation Batteries

    William Blythe are continually investing in their R&D portfolio, focusing on innovations which will bring step-change benefits to their customers. One exciting area of research currently underway at William Blythe is in the Energy Storage sector. As the industry targets higher performing batteries, the requirements of materials used in batteries also increases.

    With so much academic research taking place on 2D materials in energy storage applications, William Blythe's graphene oxide will of course play a key role in the energy storage programme we are undertaking at the moment.

    More information on our energy storage programme can be found on the William Blythe website, please get in touch if you have any questions.

    Graphene City: Manchester’s Silicon Valley of Science

    Graphene City: Manchester’s Silicon Valley of Science

    Silicon Valley - the birthplace of tech superpowers Apple and Google, an innovation hub where the worlds elite software developers, accountants, designers and investors are localised, seeking out collaboration to create the next big App or device. It is this type of environment that James Baker, CEO of the £60m Graphene Engineering Innovation Centre (GEIC), is aiming to establish in Manchester for the next generation of graphene and advanced materials-based products.

    Graphene is a 2D hexagonal array of carbon atoms that is the strongest and thinnest material known to man. It was first isolated at the University of Manchester in 2004 by Andre Geim and Konstantin Novoselov, who were awarded a noble prize for their work with the material six years later. Now in 2018, graphene has become one of the most researched substances in modern science. Graphene’s unique set of record breaking properties opens a landscape of potential applications spanning from biomedical, membrane technologies, polymer composites and in energy storage devices, to name a few.

    To accelerate the development of these applications, the University of Manchester constructed a centre dedicated to graphene research, the National Graphene Institute. Already we’re seeing start-ups sprouting from this environment, such as the award winning Eksagon Ltd, who are focussing on utilising graphene in clean energy applications. The GEIC is the next step in the scale up of graphene and 2D materials, with pilot plant facilities for composites, inks, membranes and energy storage applications. Alongside this, events will be hosted that bring together north west based companies to engage with these new disruptive technologies and help establish supply chains within the area. ‘Graphene City’ has already attracted hundreds of academics to the city to work on advanced materials, but it is expected that the industrialisation of these materials will help create many more jobs for locals in the north west. It may be bold to claim that the rise of graphene has sparked the next industrial revolution in Manchester, however it is already clear that this science is making waves throughout the city and will continue to do so in years to come. If you would like to find out more about graphene, please do get in touch.

    Fire Alarm Wallpaper using Graphene Oxide

    Fire Alarm Wallpaper using Graphene Oxide

    Many people see the development of ‘smart homes’ as the advancement of technology that can be controlled via your phone or other smart devices, however less attention is given to safety devices around the house. There has been significant research into incorporating graphene oxide in smart homes in applications from the internet of things to smart-curtains, but not as much has been found to improve upon household safety. There has been some investigations into graphene oxide as a smoke suppressant however. Researchers at the Shanghai Institute of Ceramics have recently developed a multi-purpose wallpaper that is simultaneously fireproof as well as containing built in fire detection systems using graphene oxide. In traditional homes, wallpaper is flammable and aids the spread of fires around the room, therefore there is an inherent need to minimise this risk. Previous attempts at creating flame retardant wallpapers have been somewhat effective, but the development has been hindered due to toxicity and environmental concerns.

    Hydroxyapatite (Ca10(OH)2(PO4)6) nanowires have been utilised as a flame-retardant paper. Graphene oxide ‘ink’ is then used as a thermosensitive sensor, and acts as the wiring in a normal circuit connected to a lamp as well as a buzzer. In its normal form graphene oxide acts as an insulating material, but once exposed to high temperatures (such as a fire) the material is reduced with rapid deoxygenation and becomes electrically conductive and completes the circuit to alight the alarm lamp and sound the buzzer.

    The range of graphene materials in current research in academic groups around the world highlights the effect that they will have on day to day applications in the near future. If you have any enquiries about the applications of graphene oxide or how it can improve your existing applications, please get in touch and one of the GOGraphene team will be happy to help.

    Scientific Reports, 2018, 8, 3687

    Mater. Today, 2014, 17, 152-153.

    Environ. Int., 2003, 29, 665-682.

     

    Graphene Oxide and The Internet of Things

    Graphene Oxide and The Internet of Things

    The Internet of Things, often referred to as IoT, refers to a network of physical devices which are able to communicate data. These devices can include cars, appliances, heating, lighting and security systems. In order to work, these devices need to be equipped with software, electronics and sensors, they also need to work with the internet infrastructure that already exists. Consumer IoT devices are already on the market in the shape of smart home appliances such as Hive Active Heating and The Amazon Echo, however the vision for the IoT stretches into the connectivity of trillions of devices - a vision that can only be realised through further innovation and research of all aspects required by the IoT.

    A recent paper published in Scientific Reports demonstrates the potential for graphene oxide in wireless humidity sensing. The group investigated the relative dielectric permittivity of graphene oxide under various humidity conditions at GHz, showing that increased humidity leads to an increase in the permittivity. This is a result of higher humidity leading to a greater uptake of water. By printing a graphene antenna with the graphene oxide layer, the researchers were then able to create a battery free and wireless radio-frequency identification (RFID) humidity sensor. As the device is sensitive to its surrounding humidity, it could be used as a low-cost local humidity sensor in IoT applications.

    This research serves as another great example of how graphene oxide has the potential to enable a diverse range of innovations and applications. The graphene oxide supplied through GOgraphene is being used in both academic and industrial research in many sectors. If you are interested in using graphene oxide in your research, please let us know and a member of the team will be happy to help you.

    Scientific Reports, 2018, 8, 43

    Graphene 2017 – “There Are Years That Ask Questions and Years That Answer”

    Graphene 2017 – “There Are Years That Ask Questions and Years That Answer”

    The “wonder material” graphene is a 2D hexagonal array of carbon atoms that possesses a number of remarkable and record-breaking properties. Since its first isolation in 2004, a vast amount of research has explored the fundamental physics and potential applications for the world’s first 2D material, and in doing so achieving global acclaim. Now in its teenage years, we are witnessing the maturing of graphene applications. There are graphene-composite products already publicly available, and many more disruptive technologies now becoming closer to commercialisation. This article summarises the pivotal graphene stories of 2017.

    A Nature publication made global headlines in November for its use of “graphene balls” as a novel advanced anode for lithium ion batteries in mobile phones. The material consists of silica particles coated with a layer of graphene, enhancing the energy capacity by 45% and charging rate by 5 times, equating to a fully charged phone in just 12 minutes! This is just one of the hundreds of studies conducted that utilises graphene to improve the performance of batteries and supercapacitors for energy storage applications. Researchers at the University of Sussex proved that the battery is not the only component of mobile devices that graphene can enhance. Here, graphene and silver nanowires were coated onto acrylic plastic to produce a highly conductive, flexible screen. This is one of the contenders in the race to replace the brittle indium tin oxide screens used in our mobile phones today. It can be noted that this research is very fresh, which poses the question - can this technology be industrially scaled? And if so how many years will it be before flexible phones with a 12-minute charge are commercially available?

    Not only is graphene highly conductive, it is also the strongest material known to man. This property was utilised by scientists at MIT to create a material that was 10 times stronger than steel, whilst possessing only 5% of its density. In this study, 2D graphene sheets were compressed and heated to form a 3D structure that could be used as a lightweight replacement for steel in construction and infrastructure. This breakthrough may even spark the imagination of those in the field of aerospace. The material’s extremely low density would enable easier transport into space, allowing for the interplanetary construction of space stations and colonies at a much lower cost.

    The use of graphene oxide in water purification technology has also been a subject of much interest over the past year. Whilst it is common knowledge that graphene oxide has selective permeation to water, researchers at Hubei University have designed an alternative solar powered route to purify water. This technology uses a graphene oxide aerogel, which when exposed to sunlight can heat up water to 45 oC. This gives rise to a quicker evaporation process through the highly porous aerogel structure. This steam can then be condensed as pure water through a low energy method. It is unknown if this process is economically viable at an industrial scale, and further work to increase the heat conductivity may be required.

    Although the majority of these stories describe the advancement of graphene technologies, 2017 was also the year that launched a number of exciting commercial products. Joining the likes of graphene enhanced bicycle tyres, skis and fishing rods was an ultralight, high-performance watch, the RM50-03. Produced by Richard Mille and McLaren F1 in collaboration with the University of Manchester, this product may open the door for the development of graphene applications in the automotive industry in years to come. One crucial area that needs to be considered for the commercialisation of all graphene technologies is the materials availability, and it’s here where the expertise of William Blythe comes into play. The GOgraphene team at William Blythe are committed to the development and scaling-up of our graphene products, and pride ourselves in our abilities to work with our customers to optimise their technologies. If you would like to learn more about how graphene can be utilised in your applications, please do get in touch.