FREE GLOBAL SHIPPING on all orders over £375
0 Cart
Added to Cart
    You have items in your cart
    You have 1 item in your cart
    Total
    Check Out Continue Shopping

    News — graphene oxide application

    Blog Menu
    Graphene Oxide in Slow Release Fertilisers

    Graphene Oxide in Slow Release Fertilisers

    With the growth in the global population there is a greater requirement in the production of crops to meet this demand. In the development of crops, micronutrients (such as zinc and copper) in the form of fertilisers are required to optimise plant growth. Standard fertilisers are usually water-soluble salts containing sulfates which can be affected by leaching or run-off, particularly in high rainfall locations. As a result of the fast release, large volumes of these fertilisers are required to provide sufficient nutrients to the plants but results in higher costs due to the inefficiency as well as potential environmental issues.

    Research carried out by the University of Adelaide has demonstrated the use of graphene oxide as high capacity carriers of micronutrients for use in slow-release fertilisers. Graphene oxide has a very high surface area and large quantities of oxygen functional groups on the surface of the sheet. Electrostatic interactions from the oxygen functionalities allows metal nutrients to bind to the graphene oxide sheets, with the high surface area resulting in large loading quantities. The results of the study showed highly desirable release rates, with initial fast release followed by a slow, sustained rate. This mechanism of release is favourable, particularly in environments where seedlings require larger initial quantities of micronutrients followed by a slower uptake as they grow.

     

    This application is just one of many that utilise the unique properties of graphene and graphene oxide and further demonstrates the wide range of potential uses. If you have any enquiries about the applications of graphene oxide or how it can improve your existing applications, please get in touch and one of the GOgraphene team will be happy to help.

     

    ACS Appl. Mater. Interfaces, 2017, 9, 43325−43335

    Fire Alarm Wallpaper using Graphene Oxide

    Fire Alarm Wallpaper using Graphene Oxide

    Many people see the development of ‘smart homes’ as the advancement of technology that can be controlled via your phone or other smart devices, however less attention is given to safety devices around the house. There has been significant research into incorporating graphene oxide in smart homes in applications from the internet of things to smart-curtains, but not as much has been found to improve upon household safety. There has been some investigations into graphene oxide as a smoke suppressant however. Researchers at the Shanghai Institute of Ceramics have recently developed a multi-purpose wallpaper that is simultaneously fireproof as well as containing built in fire detection systems using graphene oxide. In traditional homes, wallpaper is flammable and aids the spread of fires around the room, therefore there is an inherent need to minimise this risk. Previous attempts at creating flame retardant wallpapers have been somewhat effective, but the development has been hindered due to toxicity and environmental concerns.

    Hydroxyapatite (Ca10(OH)2(PO4)6) nanowires have been utilised as a flame-retardant paper. Graphene oxide ‘ink’ is then used as a thermosensitive sensor, and acts as the wiring in a normal circuit connected to a lamp as well as a buzzer. In its normal form graphene oxide acts as an insulating material, but once exposed to high temperatures (such as a fire) the material is reduced with rapid deoxygenation and becomes electrically conductive and completes the circuit to alight the alarm lamp and sound the buzzer.

    The range of graphene materials in current research in academic groups around the world highlights the effect that they will have on day to day applications in the near future. If you have any enquiries about the applications of graphene oxide or how it can improve your existing applications, please get in touch and one of the GOGraphene team will be happy to help.

    Scientific Reports, 2018, 8, 3687

    Mater. Today, 2014, 17, 152-153.

    Environ. Int., 2003, 29, 665-682.

     

    Graphene Oxide and The Internet of Things

    Graphene Oxide and The Internet of Things

    The Internet of Things, often referred to as IoT, refers to a network of physical devices which are able to communicate data. These devices can include cars, appliances, heating, lighting and security systems. In order to work, these devices need to be equipped with software, electronics and sensors, they also need to work with the internet infrastructure that already exists. Consumer IoT devices are already on the market in the shape of smart home appliances such as Hive Active Heating and The Amazon Echo, however the vision for the IoT stretches into the connectivity of trillions of devices - a vision that can only be realised through further innovation and research of all aspects required by the IoT.

    A recent paper published in Scientific Reports demonstrates the potential for graphene oxide in wireless humidity sensing. The group investigated the relative dielectric permittivity of graphene oxide under various humidity conditions at GHz, showing that increased humidity leads to an increase in the permittivity. This is a result of higher humidity leading to a greater uptake of water. By printing a graphene antenna with the graphene oxide layer, the researchers were then able to create a battery free and wireless radio-frequency identification (RFID) humidity sensor. As the device is sensitive to its surrounding humidity, it could be used as a low-cost local humidity sensor in IoT applications.

    This research serves as another great example of how graphene oxide has the potential to enable a diverse range of innovations and applications. The graphene oxide supplied through GOgraphene is being used in both academic and industrial research in many sectors. If you are interested in using graphene oxide in your research, please let us know and a member of the team will be happy to help you.

    Scientific Reports, 2018, 8, 43

    Graphene Oxide as a Multifunctional Tool for Purification Applications

    Graphene Oxide as a Multifunctional Tool for Purification Applications

    Graphene oxide has gained nationwide acclaim in recent years as a result of advancements in water purification using graphene oxide membranes. However, the researchers at GOgraphene have learnt that this 2D material can be utilised in a variety of purification applications. The global adsorbent market is expected to reach $4.3 billion USD by 2020, and the purification of liquid systems such as petroleum and water constitutes a large segment of this. The prevalent use of dyes, pesticides and polymers in many societies has led to the contamination of water. An understanding of the harmful effects of these molecules has lead to stricter regulations on the limits of contaminants in our drinking water. This has fuelled research into adsorbent materials suited for the removal of harmful molecules, and among these materials is graphene oxide.

    Graphene has a theoretical surface area of 2630 m2/g, which provides a massive area for the adsorption of molecules onto individual sheets. The delocalised aromatic system of graphene produces strong attractive forces between the aromatic components of organic dye molecules, as demonstrated in literature with methylene blue. A reduced graphene oxide adsorbent was also demonstrated to have an adsorption capacity of 1200 mg/g for pesticides, being larger than any material investigated for this purpose. Alternatively, graphene oxide was combined with magnetic iron compounds for the adsorption of toxic arsenic ions, allowing for easy recovery of the adsorbent material and contaminants via magnetisation.

    The versatility of graphene materials is consistently exemplified in research from around the globe, and applications like this indicate how they will make a positive impact to our lives in years to come. If you have any enquiries about the applications of graphene oxide, or about how it can improve your existing application, please do get in touch.

    Environmental Science and Pollution Research, 2016, 23, 9759-9773

    Small, 2012, 9, 273-283

    Colloids and Surfaces B: Biointerfaces, 90, 197-203

    William Blythe Launches New Collaboration with the NGI

    William Blythe Launches New Collaboration with the NGI

    William Blythe recently announced the launch of a new collaborative project with the National Graphene Institute (NGI) at the University of Manchester. This project will investigate novel anode materials for use in energy storage, specifically targeting increased capacity to extend the range of current electric vehicles. Andrew Hurst, Managing Director at William Blythe commented: "We are excited to be undertaking this important development project with Professor Dryfe and his team at the NGI. A combination of William Blythe’s capability in inorganic chemistry and the Institute's global pre-eminence in graphene offers real potential to solve one of the significant problems limiting the adoption of electric vehicles."

    Throughout this two year project, William Blythe will supply GOgraphene graphene oxide products to researchers throughout the NGI. The arrangement established will allow extended access to William Blythe’s material which is already in use in a number of projects at the Institute.

    Professor Vladimir Falko, Director of the National Graphene Institute said: “The researchers based in the NGI rely on highly consistent and top-quality graphene materials to progress our research and aid in the development of commercial applications. This new partnership with William Blythe allows the University’s graphene scientists greater access to necessary materials with which to work with, in tandem with a project exploring the possibilities of 2D materials and new battery technologies.”